首页 | 本学科首页   官方微博 | 高级检索  
     


Design and Antioxidant Properties of Bifunctional 2H-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes
Authors:Elena L. Gerasimova  Elena R. Gazizullina  Maria V. Borisova  Dinara I. Igdisanova  Egor A. Nikiforov  Timofey D. Moseev  Mikhail V. Varaksin  Oleg N. Chupakhin  Valery N. Charushin  Alla V. Ivanova
Affiliation:1.Institute of Chemical Engineering, Ural Federal University, 620002 Ekaterinburg, Russia; (E.L.G.); (E.R.G.); (M.V.B.); (D.I.I.); (E.A.N.); (T.D.M.); (M.V.V.); (O.N.C.); (V.N.C.);2.Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg, Russia
Abstract:The synthesis of inhibitors for oxidative stress-associated destructive processes based on 2H-imidazole-derived phenolic compounds affording the bifunctional 2H-imidazole-derived phenolic compounds in good-to-excellent yields was reported. In particular, a series of bifunctional organic molecules of the 5-aryl-2H-imidazole family of various architectures bearing both electron-donating and electron-withdrawing substituents in the aryl fragment along with the different arrangements of the hydroxy groups in the polyphenol moiety, namely derivatives of phloroglucinol, pyrogallol, hydroxyquinol, including previously unknown water-soluble molecules, were studied. The structural and antioxidant properties of these bifunctional 5-aryl-2H-imidazoles were comprehensively studied. The redox transformations of the synthesized compounds were carried out. The integrated approach based on single and mixed mechanisms of antioxidant action, namely the AOC, ARC, Folin, and DPPH assays, were applied to estimate antioxidant activities. The relationship “structure-antioxidant properties” was established for each of the antioxidant action mechanisms. The conjugation effect was shown to result in a decrease in the mobility of the hydrogen atom, thus complicating the process of electron transfer in nearly all cases. On the contrary, the conjugation in imidazolyl substituted phloroglucinols was found to enhance their activity through the hydrogen transfer mechanism. Imidazole-derived polyphenolic compounds bearing the most electron-withdrawing functionality, namely the nitro group, were established to possess the higher values for both antioxidant and antiradical capacities. It was demonstrated that in the case of phloroglucinol derivatives, the conjugation effect resulted in a significant increase in the antiradical capacity (ARC) for a whole family of the considered 2H-imidazole-derived phenolic compounds in comparison with the corresponding unsubstituted phenols. Particularly, conjugation of the polyphenolic subunit with 2,2-dimethyl-5-(4-nitrophenyl)-2H-imidazol-4-yl fragment was shown to increase ARC from 2.26 to 5.16 (104 mol-eq/L). This means that the considered family of compounds is capable of exhibiting an antioxidant activity via transferring a hydrogen atom, exceeding the activity of known natural polyphenolic compounds.
Keywords:2H-imidazole   polyphenols   antioxidant capacity   antiradical capacity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号