首页 | 本学科首页   官方微博 | 高级检索  
     


Dispersion and aggregation of nanoparticles derived from colloidal droplets under low-pressure conditions
Authors:Wang Wei-Ning  Lenggoro I Wuled  Okuyama Kikuo
Affiliation:Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Higashi Hiroshima, 739-8527, Japan.
Abstract:Formation of individually dispersed nanoparticles or compactly aggregated nanoparticles from sols via a spray-drying route at low pressure was investigated experimentally. Silica sol was used as a sample material. Effects of operating temperature, colloid size, sol concentration, pressure, pH and zeta potential of sols on the morphology of product particles were investigated. From the experimental results, it was shown that dispersed nanoparticles could be obtained at a relatively low pressure (20 Torr) and low temperature (200 degrees C). The experiment also showed that dispersed nanoparticles could be achieved by careful control of the interfacial energy (pH value) of the colloidal precursor. A possible mechanism of sol-to-dry-particle formation in the spray-drying process at low pressure is suggested, based on the experimental results and the available theories. This mechanism was able to explain the experimental results well.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号