Sound absorption of cellular metals with semiopen cells |
| |
Authors: | Lu T J Chen F He D |
| |
Affiliation: | Engineering Department, Cambridge University, United Kingdom. TJL21@eng.cam.ac.uk |
| |
Abstract: | A combined experimental and theoretical study is presented for the feasibility of using aluminum foams with semiopen cells for sound-absorption applications. The foams are processed via negative-pressure infiltration, using a preform consisting of water-soluble spherical particles. An analytical model is developed to quantify the dependence of pore connectivity on processing parameters, including infiltration pressure, particle size, wetting angle, and surface tension of molten alloy. Normal sound-absorption coefficient and static flow resistance are measured for samples having different porosity, pore size, and pore opening. A theory is developed for idealized semiopen metallic foams, with a regular hexagonal hollow prism having one circular aperture on each of its eight surfaces as the unit cell. The theory is built upon the acoustic impedance of the circular apertures (orifices) and cylindrical cavities due to viscous effects, and the principle of electroacoustic analogy. The predicted sound-absorption coefficients are compared with those measured. To help select processing parameters for producing semiopen metallic foams with desirable sound-absorbing properties, emphasis is placed on revealing the correlation between sound absorption and morphological parameters such as pore size, pore opening, and porosity. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|