首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Steric and electronic ligand perturbations in catalysis: asymmetric allylic substitution reactions using C2-symmetrical phosphorus-chiral (bi)ferrocenyl donors.
Authors:U Nettekoven  M Widhalm  H Kalchhauser  P C Kamer  P W van Leeuwen  M Lutz  A L Spek
Institution:Institute of Molecular Chemistry, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.
Abstract:Three series of P-chiral diphosphines based on ferrocene (1a-f, 2a-c) and biferrocenyl skeletons (3a-c), including novel ligands 1f and 3c, were employed in palladium-catalyzed allylic substitution reactions. Steric effects imposed by the phosphine residues were studied using C2-symmetrical donors 1 (1 = 1,1'-bis(arylphenylphosphino)ferrocene with aryl groups a = 1-naphthyl, b = 2-naphthyl, c = 2-anisyl, d = 2-biphenylyl, e = 9-phenanthryl, and f = ferrocenyl), whereas para-methoxy- and/or para-trifluoromethyl substitution of the phenyl moieties in 1a enabled investigation of ligand electronic effects applying ferrocenyl diphosphines 2a-c. Ligands 3 (3 = 2,2'-bis- (arylphenylphosphino)-1,1'-biferrocenyls with aryl substituents a,c = 1-naphthyl (diastereomers) and b = 2-biphenylyl) allowed for comparison of backbone structure effects (bite angle variation) in catalysis. Linear and cyclic allylic acetates served as substrates in typical test reactions; upon attack of soft carbon and nitrogen nucleophiles on (E)-1,3-diphenylprop-2-ene-1-yl acetate the respective malonate, amine, or imide products were obtained in enantioselectivities of up to 99% ee. A crystal structure analysis of a palladium 1,3-diphenyl-eta 3-allyl complex incorporating ligand (S,S)-1a revealed a marked distortion of the allyl fragment, herewith defining the regioselectivity of nucleophile addition.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号