首页 | 本学科首页   官方微博 | 高级检索  
     


Exploration the p-type doping mechanism of GaAs nanowires from first-principles study
Authors:Yu Diao  Lei Liu  Sihao Xia
Affiliation:Department of optoelectronic technology, School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract:Using first-principle calculations, we present a systematic investigation upon the influence of p-type doping on the structural and electronic properties of H-passivated GaAs nanowires with wurtzite structure. The GaAs nanowire models of different doping types, different doping elements, different doping positions and different doping concentrations are established. The calculated formation energies show that Zn element becomes more competitive or even slightly favored in realizing p-type doping compared to Be element. For an individual Zn incorporation model, Zn atom tends to substitute the subsurface Ga atom. As increasing Zn doping concentration, the p-type doping process becomes more and more difficult. Besides, both interstitial and substitutional doping lead to the distortion of atomic structure near impurity atoms and cause the ionicity of GaAs nanowires enhanced. The p-type doped GaAs nanowires models are all direct band gap semiconductors. After substitutional doping, the total density of state curves shift toward higher energy sides and the Fermi level entering valence bands. Our calculations provide a significant reference for the preparation of p-type doping GaAs nanowire, which has a promising potential application in the field of photocathodes.
Keywords:First-principles  Electronic properties  GaAs nanowires  Doping
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号