首页 | 本学科首页   官方微博 | 高级检索  
     


Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments
Abstract:Simultaneous two-frequency amplification is highly desirable in cold atom experiments. The nonlinear response would appear in the two-frequency amplification with a semiconductor tapered amplifier(TA) and has a direct influence on the experimental result. We investigated in detail the effects of frequency difference, total power, and power ratio of two seeding lasers on the output components based on a simplified theoretical model. The simulation results showed that the multiple sideband generation in the amplifier due to self-phase and amplitude modulation could be suppressed and the TA tended to linearly amplify the power ratio between two-frequency components, when the two seeding lasers had a large frequency difference. This was verified experimentally in the output power ratio measurement via a calibrated Fabry-Perot interferometer method with a good linearity and an uncertainty of 1%. We also discussed the consequences of power ratio responses in the amplification in light of cold atom experiments, especially in the ac Stark shift related phase error of Raman-type atom interferometers(AIs). It was shown that the fluctuation of intensity ratio of Raman beams may induce significant systematic errors for an AI gyroscope.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号