首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On sparse reconstruction from Fourier and Gaussian measurements
Authors:Mark Rudelson  Roman Vershynin
Institution:1. University of Missouri‐Columbia, Department of Mathematics, Columbia, MO 65211;2. University of California, Davis, Department of Mathematics, Davis, CA 95616
Abstract:This paper improves upon best‐known guarantees for exact reconstruction of a sparse signal f from a small universal sample of Fourier measurements. The method for reconstruction that has recently gained momentum in the sparse approximation theory is to relax this highly nonconvex problem to a convex problem and then solve it as a linear program. We show that there exists a set of frequencies Ω such that one can exactly reconstruct every r‐sparse signal f of length n from its frequencies in Ω, using the convex relaxation, and Ω has size equation image A random set Ω satisfies this with high probability. This estimate is optimal within the log logn and log3r factors. We also give a relatively short argument for a similar problem with k(r, n) ≈ r12 + 8 log(n/r)] Gaussian measurements. We use methods of geometric functional analysis and probability theory in Banach spaces, which makes our arguments quite short. © 2007 Wiley Periodicals, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号