Abstract: | In order to suppress the electron leakage to p-type region of near-ultraviolet GaN/In_xGa_(1-x )N/GaN multiple-quantumwell(MQW) laser diode(LD), the Al composition of inserted p-type AlxGa_(1-x)N electron blocking layer(EBL) is optimized in an effective way, but which could only partially enhance the performance of LD. Here, due to the relatively shallow GaN/In_(0.04)Ga_(0.96)N/GaN quantum well, the hole leakage to n-type region is considered in the ultraviolet LD. To reduce the hole leakage, a 10-nm n-type Al_xGa_(1-x)N hole blocking layer(HBL) is inserted between n-type waveguide and the first quantum barrier, and the effect of Al composition of Al_xGa_(1-x)N HBL on LD performance is studied. Numerical simulations by the LASTIP reveal that when an appropriate Al composition of Al_xGa_(1-x)N HBL is chosen, both electron leakage and hole leakage can be reduced dramatically, leading to a lower threshold current and higher output power of LD. |