首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A new ab initio intermolecular potential energy surface and predicted rotational spectra of the Ar-H2S complex
Authors:Lei Jinping  Zhou Yanzi  Xie Daiqian
Institution:Key Laboratory of Mesoscopic Chemistry, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
Abstract:We report a reliable three-dimensional ab initio intermolecular potential energy surface for the Ar-H(2)S complex with H(2)S monomer fixed at its experimental average structure. The potential energies were evaluated using the supermolecular approach at the coupled-cluster level with a large basis set including bond functions. The full counterpoise procedure was used to correct the basis set superposition error. The potential has a planar T-shaped global minimum with a well depth of 177.48 cm(-1) at the intermolecular distance of 3.72 ?. An additional planar local minimum is also found and is separated from the global minimum with an energy barrier with a height of 47.46 cm(-1). The combined radial discrete variable representation/angular finite basis representation method and the Lanczos algorithm were employed to calculate the rovibrational energy levels for three isotopic species of Ar-H(2)S complexes (Ar-H(2)(32)S, Ar-H(2)(33)S, and Ar-H(2)(34)S). The rotational transition frequencies and structural parameters for the three isotopomers were also determined for the ground and the first excited states, which are all in good agreement with the available experimental values.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号