首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Performance of dispersion-corrected density functional theory for the interactions in ionic liquids
Authors:Grimme Stefan  Hujo Waldemar  Kirchner Barbara
Institution:Mulliken Center for Theoretical Chemistry, Institut für Physikalsche und Theoretische Chemie, Universit?t Bonn, Beringstr. 4, D-53115 Bonn, Germany. grimme@thch.uni-bonn.de
Abstract:Potential energy curves for the dissociation of cation-anion associates representing the building units of ionic liquids have been computed with dispersion corrected DFT methods. Non-local van der Waals density functionals (DFT-NL) for the first time as well as an atom pair-wise correction method (DFT-D3) have been tested. Reference data have been computed at the extrapolated MP2/CBS and estimated CCSD(T)/CBS levels of theory. The investigated systems are combined from two cations (1-butyl-3-methylimidazolium and tributyl(methyl)posphonium) and three anions (chloride, dicyanamide, acetate). We find substantial stabilization from London dispersion energy near equilibrium of 5-7 kcal mol(-1) (about 5-6% of the interaction energy). Equilibrium distances are shortened by 0.03-0.09 ? and fundamental (inter-fragment) vibrational frequencies (which are in the range 140-180 cm(-1)) are increased by typically 10 cm(-1) when dispersion corrections are made. The dispersion-corrected hybrid functional potentials are in general in excellent agreement with the corresponding CCSD(T) reference data (typical deviations of about 1-2%). The DFT-D3 method performs unexpectedly well presumably because of cancellation of errors between the dispersion coefficients of the cations and anions. Due to self-interaction error, semi-local density functionals exhibit severe SCF convergence problems, and provide artificial charge-transfer and inaccurate interaction energies for larger inter-fragment distances. Although these problems may be alleviated in condensed phase simulations by effective Coulomb screening, only dispersion-corrected hybrid functionals with larger amounts of Fock-exchange can in general be recommended for such ionic systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号