首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A combined ONIOM quantum chemical-molecular dynamics study of zinc-uracil bond breaking in yeast cytosine deaminase
Authors:Yao Lishan  Yan Honggao  Cukier Robert I
Institution:Department of Chemistry, and MSU Center for Biological Modeling, Michigan State University, East Lansing, Michigan 48824, USA.
Abstract:A QM/MM method that combines ONIOM quantum chemistry and molecular dynamics is developed and applied to a step in the deamination of cytosine to uracil in yeast cytosine deaminase (yCD). A two-layer ONIOM calculation is used for the reaction complex, with an inner part treated at a high level for the chemical reaction (bond breaking) and a middle part treated at a lower level for relevant protein residues that are frozen in the quantum optimization. An outer layer (protein and solvent) is treated using MD. Configurations for the entire system are generated using MD and optimized with ONIOM. The method permits the use of high-level quantum calculations along with sufficient configurational sampling to approximate the potential of mean force for certain bond-breaking reactions. A previously proposed reaction mechanism for deamination (Sklenak, S.; Yao, L. S.; Cukier, R. I.; Yan, H. G. J. Am. Chem. Soc. 2004, 126, 14879) requires breaking the bond between a catalytic zinc and the O4 of uracil in order to permit product release. Using an ONIOM approach, direct bond cleavage was found to be energetically unfavorable. In the work presented here, the combined ONIOM MD method is used to show that the barrier for bond cleavage is small, approximately 3 kcal/mol, and, consequently, should not be the rate-limiting step in the reaction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号