首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterization of Water-Soluble Cellulose Derivatives in Terms of the Molar Mass and Particle Size as well as Their Distribution
Authors:W-M Kulicke  Christian Clasen  Claudia Lohman
Institution:Institute of Technical and Macromolecular Chemistry, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany
Abstract:The property profile of cellulose derivatives dissolved in aqueous solvents is not only dependent on the chemical composition (average-, molar- or regiospecific degree of substitution, as well as the substitution along the chain), solvent, temperature and concentration but also on the molar mass and the particle size. All this information can be obtained from the Mark-Houwink-Sakurada-relationship (;gh]-M-) or the RG-M-relationship, if these are at hand. These relationships are suitable for a specific degree of substitution. The RG-M-relationship has only been determined and published for a few water-soluble cellulose derivatives. The prerequisite is the availability of a homologous series of samples with the same chemical composition. In this paper it is shown that only the ultrasonic degradation is able to create such a series. Due to the ability of coupled methods of analysis to acquiring absolute data, molar mass and particle size distributions have been compiled in recent years. Using such methods it was possible to determine molar mass and particle size distributions of several aqueous cellulose derivative solutions by combining a fractionation unit (size exclusion chromatography (SEC) or flow field-flow fractionation (FFFF)) with multi angle laser light scattering (MALLS) for the detection of Mw and RG and concentration detection (DRI). Results for nonionic cellulose ethers, mixed cellulose ethers, ionic carboxymethyl cellulose, sulfoethyl cellulose, hydrophobically modified hydroxyethyl cellulose were obtained and are partially discussed with focus on the recovery of cellulose derivates after fractionation and the impact on the distribution functions.
Keywords:field flow fractionation  hyphenated techniques  molar mass distribution  size exclusion chromatography  structure-property relations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号