首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Direct contact heat transfer from an immiscible liquid jet
Authors:Dr-Ing Uri Gat  Richard A Green MA
Institution:1. Oak Ridge National Laboratory, 37830, Oak Ridge, Tennessee, USA
2. Paducah Gaseous Diffusion Plant, 42001, Paducah, Kentucky, USA
Abstract:Temperature distribution and transfer of heat in a vertical, immiscible, liquid jet in direct contact with a liquid matrix are analyzed. A theoretical model for plug and parabolic flow is adopted from the literature, the treatment of a special V-shaped velocity distribution expected in the experiment and suitable for reactor application is calculated. Two common surface conditions, i.e. constant heat flux or constant temperature are considered. An experiment was performed in which a high Prandtl number fluid (oil) formed the jet and a low Prandtl number fluid (water) formed the matrix. The experimental results fall within theoretical results obtained for a V-type velocity distribution and plug flow. It was determined that the heat transfer characteristics of a direct contact jet flow in most cases have definite advantages over those of flow in a pipe beyond the obvious advantage of removal of the pipe wall's thermal resistance. These advantages result from the more flat velocity distribution encountered in jet flow as compared to a corresponding Laminar pipe flow. The likeliness of having a particular flow shape is discussed. Advantages of a central wire, leading to the V-type flow, are the enhancement of heat transfer and the stabilisation of the jet for any desired length. The jet flow is laminar.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号