首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Temperature-dependent and friction-controlled electrochemically induced shuttling along molecular strings associated with electrodes.
Authors:Eugenii Katz  Ronan Baron  Itamar Willner  Noa Richke  R D Levine
Institution:Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Abstract:The temperature and solvent composition dependence of the electrochemically stimulated rate of shuttling of the redox-active cyclophane, cyclobis(paraquat-p-phenylene), on a molecular string has been studied. The molecular string includes a pi-donor diiminebenzene-site that is associated on one side with an electrode, and stoppered on the other side with an adamantane unit. The cyclophane rests on the pi-donor site, owing to stabilizing pi-donor-acceptor interactions. Electrochemical reduction of the cyclophane units, to the bis-radical cation cyclophane, results in the shuttling of the reduced cyclophane towards the electrode, a process that is driven by the removal of the stabilizing donor-acceptor interactions, and the electrostatic attraction of the reduced product by the electrode. The latter process is energetically downhill, and is temperature-independent. Upon oxidation of the reduced cyclophane that is associated with the electrode, the energetically uphill shuttling of the oxidized cyclophane to the pi-donor site proceeds. The rate of this translocation process has been found to be temperature-dependent, and controlled by the solvent composition. The experimental results have been theoretically analyzed in terms of Kramers' molecular friction model. The theoretical fitting of the experimental results, using solutions of variable composition, reveals that the rate-constants for the uphill reaction in a pure aqueous solution follow the temperature-dependence of the viscosity of water. The results demonstrate the significance of friction phenomena in shuttling processes within molecular machines.
Keywords:Kramers’ theory  molecular electronics  molecular machines  molecular mechanics  translocation kinetics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号