A study of molecular vibrational relaxation mechanism in condensed phase based upon mixed quantum-classical molecular dynamics. I. A test of IBC model for the relaxation of a nonpolar solute in nonpolar solvent at high density |
| |
Authors: | Sato Masahiro Okazaki Susumu |
| |
Affiliation: | Department of Electronic Chemistry, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan. |
| |
Abstract: | In order to investigate vibrational relaxation mechanism in condensed phase, a series of mixed quantum-classical molecular dynamics calculations have been executed for nonpolar solute in nonpolar solvent and polar solute in polar solvent. In the first paper (Paper I), relaxation mechanism of I2 in Ar, where Lennard-Jones force is predominant in the interaction, is investigated as a function of density and temperature, focusing our attention on the isolated binary collision (IBC) model. The model was originally established for the relaxation in gas phase. A key question, here, is "can we apply the IBC model to the relaxation in the high-density fluid?" Analyzing the trajectory of solvent molecule as well as its interaction with the solute, we found that collisions between them may be defined clearly even in the high-density fluid. Change of the survival probability of the vibrationally first excited state on collision was traced. The change caused by collisions with a particular solvent molecule was also traced together with the interaction between them. Each collision makes a contribution to the relaxation by a stepwise change in the probability. The analysis clearly shows that the relaxation is caused by collisions even in the high-density fluid. The difference between stepwise relaxation and the continuous one found for the total relaxation in the low-density fluid and in the high-density one, respectively, was clarified to come from just the difference in frequency of the collision. The stronger the intensity of the collision is, the greater the relaxation caused by the collision is. Further, the shorter the collision time is, the greater the resultant relaxation is. The discussion is followed by the succeeding paper (Paper II), where we report that molecular mechanism of the relaxation of a polar molecule in supercritical water is significantly different from that assumed in the IBC model despite that the density dependence of the relaxation rate showed a linear correlation with the local density of water around the solute, the linear correlation being apparently in good accordance with the IBC model. The puzzle will be solved in Paper II. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|