首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanisms of resonant laser ionization
Authors:A G Leonov  D I Chekhov  A N Starostin
Institution:(1) Moscow Physicotechnical Institute, 141700 Dolgoprudnyi, Moscow Region, Russia;(2) Troitsk Institute of Innovative and Thermonuclear Research, 142092 Troitsk, Moscow Region, Russia
Abstract:An experimental investigation and numerical simulation of resonant laser breakdown are performed. As a result, quantitative agreement between the experimental data on the parameters of a dense resonant plasma (the electron density and the electron temperature) and the results of calculations in the range of detunings of the laser radiation from resonance Δλ>2–2.5 nm, in which the spatial instability of the intense resonant laser beam and the absorption of radiation are minimal, is obtained for the first time. It is shown that the previously proposed mechanism of resonant breakdown associated with laser-induced associative ionization introduces only a small correction to the final extent of ionization of the resonant plasma and scarcely alters its temperature. The influence of quantum stimulated inverse bremsstrahlung processes, which are usually described as collisions of the second kind in the resonance case, on the energy gain by electrons is analyzed for the first time in reference to specific experimental findings. The numerical calculations show that at detunings of the order of the Rabi frequency, the mechanism by which electrons gain energy through the resonant system does not reduce to collisions of the second kind and can significantly increase the density of the resonant plasma. However, in this range of detunings the laser beam is still strongly perturbed by instability processes, precluding a proper comparison of the theory with experiment. At large Δλ the classical and quantum cases differ from one another only slightly, and the values of N e calculated for both mechanisms lie within the measurement error. Zh. éksp. Teor. Fiz. 111, 1274–1296 (April 1997)
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号