首页 | 本学科首页   官方微博 | 高级检索  
     


Quantized stabilization of discrete-time systems in a networked environment
Affiliation:Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract:This paper is concerned with the problem of output feedback stabilization for a class of discrete-time systems with sector nonlinearities and imperfect measurements. A unified control law model is proposed to take the network-induced delay, random packet dropout and measurement quantization into consideration simultaneously. By choosing appropriate Lyapunov functional, a new stability condition, which is dependent on multiple network status, is established for the resulting closed-loop system. Based on the result, a design criterion for the static output feedback controller is formulated in the form of nonconvex matrix inequalities, and the cone complementary linearization (CCL) procedure is exploited to solve the nonconvex feasibility problem. Incidentally, a less conservative synthesis method is also developed for the state feedback stabilization purpose. Finally, two illustrative examples are provided to illustrate the effectiveness and applicability of the proposed design method.
Keywords:Networked control systems  Output feedback stabilization  Time-varying delay  Random packet dropout  Signal quantization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号