首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Automatic finite element formulation and assembly of hyperelastic higher order structural models
Institution:Dept. of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India
Abstract:The formulation of higher order structural models and their discretization using the finite element method is difficult owing to their complexity, especially in the presence of nonlinearities. In this work a new algorithm for automating the formulation and assembly of hyperelastic higher-order structural finite elements is developed. A hierarchic series of kinematic models is proposed for modeling structures with special geometries and the algorithm is formulated to automate the study of this class of higher order structural models. The algorithm developed in this work sidesteps the need for an explicit derivation of the governing equations for the individual kinematic modes. Using a novel procedure involving a nodal degree-of-freedom based automatic assembly algorithm, automatic differentiation and higher dimensional quadrature, the relevant finite element matrices are directly computed from the variational statement of elasticity and the higher order kinematic model. Another significant feature of the proposed algorithm is that natural boundary conditions are implicitly handled for arbitrary higher order kinematic models. The validity algorithm is illustrated with examples involving linear elasticity and hyperelasticity.
Keywords:Hyperelasticity  Geometric nonlinearity  Automatic finite element formulation  Automatic finite element assembly  Automatic differentiation  Higher order structural model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号