首页 | 本学科首页   官方微博 | 高级检索  
     


Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories
Affiliation:School of Computing, Engineering and Mathematics, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
Abstract:This paper investigates the linear free vibration of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Two types of CNT reinforced beams, namely uniformly distributed CNT reinforced (UD-CNT) beams and functionally graded CNT reinforced (FG-CNT) beams, are considered. It is assumed that the SWCNTs are aligned along the beam axial direction and the distribution of the SWCNTs may vary through the thickness of the beam. The virtual strain and kinetic energies of the FG-CNT composite beam are obtained using the classic variational method of Hamilton’s principle and then solved by the p-Ritz method. Vibration frequency parameters for the FG-CNT beams based on the first order and third order beam theories are presented and the effects of CNT filler volume fraction, distribution, beam span to depth ratio and end support conditions on the free vibration characteristics of the beams are discussed. Comparison studies for UD-CNT and FG-CNT beams based on the first order and the third order beam theories are also performed and the differences in vibration frequencies between these two theories are highlighted.
Keywords:First order beam theory  Third order beam theory  Functionally graded materials  Nanocomposites  Ritz method
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号