首页 | 本学科首页   官方微博 | 高级检索  
     


Stress and fracture analysis in delaminated orthotropic composite plates using third-order shear deformation theory
Affiliation:Budapest University of Technology and Economics, Department of Applied Mechanics, Műegyetem rkp. 5., Building MM, 1111 Budapest, Hungary
Abstract:The third-order shear deformable plate theory is applied in this work to calculate the stresses and energy release rates in delaminated orthotropic composite plates with straight crack front. The delaminated parts are modeled by the general third-order plate theory, while a double-plate model with interface constraint is developed for the uncracked portion of the plate. The governing equations of the uncracked part are formulated by considering the equilibrium and the displacement continuity along the interface. As an example, a simply-supported delaminated orthotropic plate subjected to a point force is solved adopting Lévy plate formulation and the state-space approach. The mode-II and mode-III energy release rate distributions along the crack front were calculated by the J-integral. To verify the analytical results the 3D finite element model of the plate was constructed and the energy release rates were calculated by the virtual crack-closure technique. A previous second-order plate theory solution was also utilized in the course of the comparison. The results indicate a good agreement between analysis and numerical computation and that third-order theory is better in some cases than the second-order approximation.
Keywords:Delamination  Mixed mode II/III fracture  Energy release rate  Third-order plate theory  State-space model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号