首页 | 本学科首页   官方微博 | 高级检索  
     


Classical proof forestry
Authors:Willem Heijltjes
Affiliation:LFCS, School of Informatics, University of Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh EH8 9AB, United Kingdom
Abstract:Classical proof forests are a proof formalism for first-order classical logic based on Herbrand’s Theorem and backtracking games in the style of Coquand. First described by Miller in a cut-free setting as an economical representation of first-order and higher-order classical proof, defining features of the forests are a strict focus on witnessing terms for quantifiers and the absence of inessential structure, or ‘bureaucracy’.This paper presents classical proof forests as a graphical proof formalism and investigates the possibility of composing forests by cut-elimination. Cut-reduction steps take the form of a local rewrite relation that arises from the structure of the forests in a natural way. Yet reductions, which are significantly different from those of the sequent calculus, are combinatorially intricate and do not exclude the possibility of infinite reduction traces, of which an example is given.Cut-elimination, in the form of a weak normalisation theorem, is obtained using a modified version of the rewrite relation inspired by the game-theoretic interpretation of the forests. It is conjectured that the modified reduction relation is, in fact, strongly normalising.
Keywords:03F05   03F07
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号