首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Study of antimicrobial properties of cotton medical textiles treated with citric acid and dried/cured by microwaves
Authors:Ana Budimir  Sandra Bischof Vukusic  Sandra Grgac Flincec
Institution:(1) Department of Clinical and Molecular Microbiology, University Hospital Center Zagreb, Zagreb, Croatia;(2) Department of Textile Technology & Ecology, University of Zagreb Faculty of Textile Technology, Prilaz Baruna Filipovica 28a, 10000 Zagreb, Croatia;
Abstract:The purpose of this study was to examine antibacterial and antifungal activity of antibacterial finish based on Citric acid on cotton medical textiles. The ability to effectively reduce the number of gram-negative, gram-positive bacteria and yeast was evaluated, specifically comparing the antibacterial activity after two different drying/curing methods. Citric acid (CA) and diethyl–tetradecyl–3–(trimethoxysilyl)-propyl] ammonium chloride (Quat) were used for hygiene and disinfection purposes of medical textiles in this study. It was applied by pad-dry process and its fixation to cellulose hydroxyls was enhanced either by high curing temperatures or microwaves (MW). Determination of antibacterial activity of finished products was performed according to ISO 20743:2007 standard before the washing and after the 10 washing cycles. Antibacterial activity was tested against gram-negative bacteria, Escherichia coli, gram-positive-Staphylococcus aureus and yeast, Candida albicans. Obtained results are confirming the possibility of eco-friendly CA application, for the purpose of antimicrobial finishing of cotton medical textiles. Prevention of nosocomial infections with the Citric acid is possible using both curing methods (convection and microwave) and furthermore, the treatment is durable up to 10 washing cycles. Citric acid, as one of the suitable active substances is crosslinked to the cellulose hydroxyls by the formation of ester linkages. Its antimicrobial effectiveness against the chosen microorganisms proved to be the best against S. aureus. Applied finish bath has additional crease proof effectiveness providing sufficient both antimicrobial and crease proof effectiveness, so as the durability against 10 washing cycles.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号