首页 | 本学科首页   官方微博 | 高级检索  
     


Hadron spectrum and infrared-finite behavior of QCD running coupling
Authors:Gurjav Ganbold
Affiliation:1.Bogoliubov Laboratory of Theoretical Physics,JINR,Dubna,Russia;2.Institute of Physics and Technology,Ulaanbaatar,Mongolia
Abstract:We study the behavior of the QCD effective coupling α s in the low-energy region by exploiting the conventional meson spectrum within a relativistic quantum-field model based on analytical confinement of quarks and gluons. The spectra of quark-antiquark and two-gluon bound states are defined by using a master equation similar to the ladder Bethe-Salpeter equation. A new, independent and specific infrared-finite behavior of QCD coupling is found below energy scale ∼1 GeV. Particularly, an infrared-fixed point is extracted at α s (0) ≅ 0.757 for confinement scale Λ = 345 MeV. We provide a new analytic estimate of the lowest-state glueball mass. As applications, we also estimate masses of some intermediate and heavy mesons as well as the weak-decay constants of light mesons. By introducing only a minimal set of parameters (the quark masses m f and Λ) we obtain results in reasonable agreement with recent experimental data in a wide range of energy scale ∼0.1–10 GeV. We demonstrate that global properties of some low-energy phenomena may be explained reasonably in the framework of a simple relativistic quantum-field model if one guesses correct symmetry structure of the quark-gluon interaction in the confinement region and uses simple forms of propagators in the hadronisation regime. The model may serve a reasonable framework to describe simultaneously different sectors in low-energy particle physics.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号