首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Arachno, nido, and closo aromatic isomers of the Li6B6H6 molecule
Authors:Alexandrova Anastassia N  Boldyrev Alexander I
Institution:Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322-0300, USA.
Abstract:We analyzed chemical bonding in low-lying isomers of the recently computationally predicted B(6)H(6)Li(6) molecule. According to our calculations the benzene-like B(6)H(6)Li(6) (D(2h), (1)A(1g)) arachno structure with the planar aromatic B(6)H(6)(6-) anion is the most stable one. A nido isomer with two aromatic B(6)H(6)(4-) (pentagonal pyramid) and Li(3)(+) (triangular) moieties, which can be considered as derived from the global minimum structure through a two-electron intramolecular transfer from B(6)H(6)(6-) to three Li(+) cations, was found to be 10.7 kcal/mol higher in energy. A closo isomer with three aromatic moieties (octahedral B(6)H(6)(2-) and two Li(3)(+)) was found to be 31.3 kcal/mol higher in energy than the global minimum. Another isomer with three aromatic moieties (two B(3)H(3)(2-) and Li(3)(+)) was found to be substantially higher in energy (74.4 kcal/mol). Thus, the intramolecular electron transfers from the highly charged B(6)H(6)(6-) anion to cations are not favorable for the B(6)H(6)Li(6) molecule, even when a formation of three-dimensional aromatic B(6)H(6)(2-) anion and two sigma-aromatic Li(3)(+) cations occurs in the closo isomer.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号