首页 | 本学科首页   官方微博 | 高级检索  
     


Exploring the electronic band structure of individual carbon nanotubes under 60 T
Authors:S  bastien Nanot, Walter Escoffier, Benjamin Lassagne, Jean-Marc Broto,Bertrand Raquet
Affiliation:aLaboratoire national des champs magnétiques intenses UPR3228, CNRS, INSA, UPS, université de Toulouse, 143, avenue de Rangueil, 31400 Toulouse, France
Abstract:Nano-sciences, and in particular nano-physics, constitute a fascinating world of investigations where the experimental challenges are to synthesize, to address (for instance optically or electrically) to explore and promote the remarkable physical properties of new nano-materials. Somehow, one of the most promising realization of nano-sciences lies in carbon-based nano-materials with sp2 covalent bonds. In particular, carbon nanotubes, graphene and more recently ultra-narrow graphene nano-ribbons are envisioned as elementary bricks of the future of nano-electronics. However, prior to such an achievement, the first steps consist in understanding their fundamental electronic properties when they constitute the drain–source channel of a gated device or inter-connexion elements. In this article, we present the richness of challenging experiments combining single-object measurements with an extreme magnetic environment. We demonstrate that an applied magnetic field (B), along with a control of the electrostatic doping, drastically modifies the electronic band structure of a carbon nanotube based transistor. Several examples will be addressed in this presentation. When B is applied parallel to the tube axis, a quantum flux threading the tube induces a giant Aharonov–Bohm conductance modulation mediated by Schottky barriers whose profile is magnetic field dependent. In the perpendicular configuration, the applied magnetic field breaks the revolution symmetry along the circumference and non-conventional Landau states develop in the high field regime. By playing with a carbon nanotube based electronic Fabry–Perot resonator, the field dependence of the resonant states of the cavity reveals the onset of the first Landau state at zero energy. These experiments enlighten the outstanding efficiency of magneto-conductance experiments to probe the electronic properties of carbon based nano-materials. To cite this article: S. Nanot et al., C. R. Physique 10 (2009).
Keywords:Carbon nanotubes   High magnetic field   Electronic conductivityMots-clé  s: Nanotubes de carbone   Champ magné  tique intense   Conductivité   é  lectronique
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号