首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impact dynamics of MEMS switches
Authors:III" target="_blank">Ronald P LaRoseIII  Kevin D Murphy
Institution:(1) Department of Electrical Engineering, Urmia MEMS Lab, Urmia University, Urmia, Iran
Abstract:During operation, a MEMS switch is activated by an applied voltage. This causes the switch, often a doped silicon microbeam, to be attracted toward (pulled-into) a substrate. The component–substrate contact completes a circuit and permits the flow of current. Calculations for the minimum voltage required to achieve quasi-static pull-in are well documented. But for these quasi-static pull-in voltages to be meaningful, the voltage would have to be increased gradually until the critical value Vpull-inV_{\mathrm{pull\mbox{-}in}} is reached and the switch closes. Of course, practical considerations might require the switch to cycle on and off quickly, i.e., dynamically. This is particularly true in the case of radio frequency (RF) MEMS switches. In this paper, a model is developed and used to consider the dynamic pull-in characteristics of a clamped-clamped microbeam. This model includes inertial effects, structural and air damping (squeeze-film damping), as well as the impact behavior of the microbeam with the substrate. Parameter combinations leading to various types of behavior (no pull-in, air-bounce, wall bounce, etc.) are clearly identified. In an attempt to ensure fast switch closure and limit bouncing, two new applied voltage profiles are considered.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号