首页 | 本学科首页   官方微博 | 高级检索  
     


An accurate molecular mechanics model for computation of size-dependent elastic properties of armchair and zigzag single-walled carbon nanotubes
Authors:R. Ansari  M. Mirnezhad  S. Sahmani
Affiliation:1. Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran
Abstract:In this paper, an analytical solution based on a molecular mechanics model is developed to evaluate the mechanical properties of armchair and zigzag single-walled carbon nanotubes (SWCNTs). Adopting the Perdew–Burke–Ernzerhof (PBE) exchange correlation, the density functional theory (DFT) calculations are performed within the generalized gradient approximation (GGA) to evaluate force constants used in the molecular mechanics model. After that, based on the principle of molecular mechanics, explicit expressions are proposed to obtain surface Young’s modulus, Poisson’s ratio and surface shear modulus of SWCNTs corresponding to both types of armchair and zigzag chiralities. Based on the DFT calculations, it is found that the flexural rigidity of graphene is independent of the type of chirality which indicates the isotropic characteristic of this material. Moreover, it is observed that for the all values of nanotube diameter, surface Young’s modulus for the armchair nanotube is more than that of zigzag nanotube. It is shown that the trend predicted by the present model is in good agreement with other models which confirms the validity as well as the accuracy of the present molecular mechanics model.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号