首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Periodic hexagonal mesostructured chalcogenides based on platinum and [SnSe4]4- and [SnTe4]4- precursors. Solvent dependence of nanopore and wall organization
Authors:Trikalitis Pantelis N  Bakas Thomas  Kanatzidis Mercouri G
Institution:Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
Abstract:Mesostructured chalcogenide-based materials with long-range order and semiconducting properties can be prepared using suitable molecular building blocks, linkage metal ions and surfactant molecules. In this paper we present surfactant templated, open framework platinum tin selenide and telluride materials assembled using K4SnQ4 (Q = Se, Te) salts and K2PtCl4 as precursors and a study of pore and wall organization. We find that materials prepared in water exhibit disordered pore organization, whereas those prepared in formamide are long-range ordered with hexagonal symmetry. In formamide the SnQ4]4- anions undergo condensation-oligomerization reactions that produce different chalcogenido molecular species, whereas in water the anions remain intact. In addition to solvent, the pore organization and overall quality of the mesostructured materials strongly depend on the surfactant molecules, i.e., chain length and headgroup size. For example, highly ordered mesostructured platinum tin selenides with hexagonal symmetry were obtained using the hydroxyl-functionalized surfactants CnH2n+1N(CH3)(CH2CH2OH)2Br (n = 16, 18, and 20), but when the headgroup was triethylammonium, hexagonal pore order was achieved only for n = 20 and not for n = 16 and 18. The experimental results imply that in order to achieve highly ordered chalcogenide frameworks a single building anionic block might be insufficient. Finally, we also report the first examples of hexagonal mesostructured Pt/Sn/Te materials based on K4SnTe4 as the precursor. The tellurides behave differently for their selenium analogues and have very low energy band gaps, in the range 0.5-0.7 eV.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号