首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Supramolecular origins of product selectivity for methanol-to-olefin catalysis on HSAPO-34.
Authors:W Song  H Fu  J F Haw
Institution:Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661, USA.
Abstract:Ethylene selectivity in methanol-to-olefin (MTO) catalysis is related to the number of methyl groups on benzene rings trapped in the nanocages of the preferred catalyst HSAPO-34. By correlating the time evolutions of the catalysts' 13C NMR spectra and the volatile product distribution following abrupt cessation of methanol flow, we discovered that (in the absence of other adsorbates) propene is favored by methylbenzenes with four to six methyl groups but ethylene is predominant from those with two or three methyl groups. We substantially increased ethylene selectivity by operating at lower methanol partial pressures or higher temperatures, either of which reduces the steady-state average methyl substitution. As a step toward a kinetic analysis of the MTO reaction on HSAPO-34, we treated each nanocage with a methylbenzene molecule as a supramolecule capable of unimolecular dissociation into ethylene or propene and a less highly substituted methylbenzene. Addition of a water molecule to a nanocage containing a methylbenzene produces a distinct supramolecule with unique properties. Indeed, co-feeding water with methanol significantly increased the average number of methyl groups per ring at steady state relative to identical conditions without additional water, and also increased ethylene selectivity, apparently through transition state shape selectivity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号