首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Crystallization-induced composition inhomogeneities in PVDF/PMMA blends
Authors:P Kalivianakis  B-J Jungnickel
Abstract:Composition profiles develop around growing PVDF spherulites in a blend with PMMA. These profiles assume stationary courses after a certain crystallization time provided that the overall degree of crystallinity is not too high. The composition-dependent growth rate and the diffusion-controlled remove of the surplus PMMA from the spherulite surface are then in a stationary equilibrium. The internal structure of the spherulites will then be homogeneous, too. Upon isothermal crystallization of a PVDF/PMMA = 60/40 (wt %) blend at 160°C for at least 4 h, the spherulites internal degree of crystallinity xc as related to the PVDF fraction obeys the inequality 55 wt % ≤ xc ≤ 84 wt %. The overall PMMA content within the spherulites as averaged over its whole inside has been determined by IR microscopy. It amounts to about 15 wt %. In contrast, the PMMA content of the amorphous phase within the spherulites (averaged again over its whole inside) ranges between 28 and 52 wt %. This composition jumps at the spherulite surface to 52 wt %. From the slope of the composition profiles outside the spherulites that have a width of more than 50 μm, the effective chain diffusion coefficient in blends as averaged over both components can be calculated to amount to (250 ± 100) μm2h−1. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2923–2930, 1998
Keywords:polymer blends  crystallization  diffusion  composition inhomogeneities  internal spherulite structure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号