首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gradually Tuning the Flexibility of Two-Dimensional Covalent Organic Frameworks via Stepwise Structural Transformation and Their Flexibility-Dependent Properties
Authors:Zhi-Bei Zhou  Hui-Hui Sun  Qiao-Yan Qi  Prof Xin Zhao
Institution:Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Abstract:Flexible covalent organic frameworks (COFs) are intriguing for their dynamic properties distinctive from rigid counterparts but still suffer from limited accessibility. Especially, controlling flexibility of COFs is challenging and the impact of different flexibility on properties of COFs has rarely been unveiled. This article reports stepwise adjustment on flexibility of two-dimensional COFs, which is realized by the designed synthesis of rigid COF (R-COF), semi-flexible COF (SF-COF), and flexible COF (F-COF) through polymerization, linker exchange, and linkage conversion with a newly developed method for reduction of hydrazone, respectively. Significant difference in breathing behavior and self-adaptive capability of the three COFs are uncovered through vapor response and iodine capture experiments. Gas sorption experiments indicate that the porosity of F-COF could switch from “close” state in nitrogen to “open” state in carbon dioxide, which are not observed for R-COF and SF-COF. This study not only develops a strategy to adjust the flexibility of COFs by tuning their linkers and linkages, but also provides a deep insight into the impact of different flexibility on properties of COFs, which lays a foundation for the development of this new class of dynamic porous materials.
Keywords:Covalent Organic Frameworks  Dynamic Properties  Flexibility  Self-Adaptability  Structural Transformation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号