首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Atomization-Induced High Intrinsic Activity of a Biocompatible MgAl-LDH Supported Ru Single-Atom Nanozyme for Efficient Radicals Scavenging
Authors:Dr Bingqing Wang  Yingyan Fang  Xu Han  Runtao Jiang  Lin Zhao  Xiang Yang  Jing Jin  Prof Aijuan Han  Prof Junfeng Liu
Institution:1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P.?R. China

These authors contributed equally to this work.;2. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P.?R. China

Abstract:Developing efficient nanozymes to mimic natural enzymes for scavenging reactive radicals remains a significant challenge owing to the insufficient activity of conventional nanozymes. Herein, we report a novel Ru single-atom nanozyme (SAE), featuring atomically dispersed Ru atoms on a biocompatible MgAl-layered double hydroxide (Ru1/LDH). The prepared Ru1/LDH SAE shows high intrinsic peroxidase (POD)-like catalytic activity, which outperforms the Ru nanoclusters (NCs) nanozyme by a factor of 20 and surpasses most SAEs. The density functional theory calculations reveal that the high intrinsic POD-like activity of Ru1/LDH can be attributed to a heterolytic path of H2O2 dissociation on the single Ru sites, which requires lower free energy (0.43 eV) compared to the homolytic path dissociation on Ru NC (0.63 eV). In addition, the Ru1/LDH SAE shows excellent multiple free radicals scavenging ability, including superoxide anion radical (O2??), hydroxyl radical (?OH), nitric oxide radical (NO?) and 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH?). Given the advantages of Ru1/LDH with high enzymatic activities, biosafety, and ease to scale up, it paves the way for exploring SAEs in the practical biological immunity system.
Keywords:Layered Double Hydroxide  Multi-Enzymes  Peroxidase-Like  Ru  Single-Atom Nanozyme
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号