首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bioinspired Artificial Visual System Based on 2D WSe2 Synapse Array (Adv. Funct. Mater. 41/2023)
Authors:Yue Gong  Peng Xie  Xuechao Xing  Ziyu Lv  Tao Xie  Shirui Zhu  Hsiao-Hsuan Hsu  Ye Zhou  Su-Ting Han
Institution:1. College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060 P. R. China

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798 Singapore;2. College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060 P. R. China;3. College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060 P. R. China

School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore;4. Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106 Taiwan;5. Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 P. R. China

Abstract:Machine vision systems that capture images for visual inspection and recognition tasks must be able to perceive, memorize, and compute any color scene. To achieve this, most of the current visual systems use circuits and algorithms which may reduce efficiency and increase complexity. Herein, a 2D semiconductor tungsten diselenide (WSe2)-based phototransistor that successfully demonstrates an artificial vision system integrating the processing capability of visual information sensing memory, is reported. Furthermore, based on a 6 × 6 fabricated retinal perception array, artificial visual information sensing memory and processing system are proposed to perform image recognition tasks, which can avoid the time delay and energy consumption caused by data conversion and movement. On the other hand, highly linear symmetric synaptic plasticity can be achieved based on the modulation of carrier types in WSe2 transistors with different thicknesses, facilitating the high level of training and inference accuracy for artificial neural networks. Last, through training and inference simulations, the feasibility of the hybrid synapses for optical neural networks (ONN) is demonstrated.
Keywords:artificial vision system  in-sensor computing  memory  optical neural networks  WSe2
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号