首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Small Changes,Big Impact: Tungsten Bronzes with Extremely Large Second Harmonic Generation Achieved by the Transition Metal Doping on the B-Site
Authors:Yejin Pi  Yunseung Kuk  Kang Min Ok
Institution:Department of Chemistry, Sogang University, Seoul, 04107 Republic of Korea
Abstract:Two novel transition metal-doped tungsten bronze oxides, Pb2.15Li0.85Nb4.85Ti0.15O15 (PLNT) and Pb2.15Li0.55Nb4.85W0.15O15 (PLNW), are synthesized by high-temperature solid-state reactions. The Rietveld method using the high-resolution synchrotron radiation indicates that PLNT and PLNW crystallize in the orthorhombic polar noncentrosymmetric space group, Pmn21 (no. 31). As a class of tungsten bronze oxide, PLNT and PLNW retain a unique rigid framework composed of d0 transition metal cation (Ti4+ or W6+)-doped highly distorted NbO6 octahedra along with the subsequently generated Pb/LiO12 and PbO15 polyhedra. Interestingly, the d0 transition metal-doped tungsten bronzes, PLNT and PLNW, exhibit extremely large second-harmonic generation (SHG) responses of 56 and 67 × KH2PO4, respectively. The observed immeasurably strong SHG is mainly attributed to a net polarization originating from the alignment of highly distorted NbO6 octahedra with doped transition metals in the frameworks. It is believed that doping transition metal cations at the B-site of the tungsten bronze structures should be an innovative strategy to develop novel high-performance nonlinear optical materials.
Keywords:nonlinear optics  octahedral distortions  second harmonic generation  transition metal dopants  tungsten bronze
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号