首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Study of the shock motion in a hypersonic shock system/turbulent boundary layer interaction
Authors:C B Lee  S Wang
Institution:(1) Institute of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, 100083 Beijing, China;(2) Institute of Mechanics, Chinese Academy of Sciences, 100080 Beijing, China
Abstract:Wall pressure fluctuations and surface heat transfer signals have been measured in the hypersonic turbulent boundary layer over a number of compression-corner models. The distributions of the separation shock oscillation frequencies and periods have been calculated using a conditional sampling algorithm. In all cases the oscillation frequency distributions are of broad band, but the most probable frequencies are low. The VITA method is used for deducing large scale disturbances at the wall in the incoming boundary layer and the separated flow region. The results at present showed the existence of coherent structures in the two regions. The zero-cross frequencies of the large scale structures in the two regions are of the same order as that of the separation shock oscillation. The average amplitude of the large scale structures in the separated region is much higher than that in the incoming boundary layer. The length scale of the separation shock motion region is found to increase with the disturbance strength. The results show that the shock oscillation is of inherent nature in the shock wave/turbulent boundary layer interaction with separation. The shock oscillation is considered to be the consequence of the coherent structures in the separated region.This work was supported by the Chinese National Science Foundation. Thanks for Prof. Z. B. Lin and Miss X. Y. Feng for their helps. The authors wish to express thanks to Professor W. Merzkirch who has helped us to check the paper again and again.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号