首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optimization of the transmitted wavefront for the infrared adaptive optics system
Authors:PengQian Yang  Stefan Hippler  JianQiang Zhu
Abstract:The adaptive optics system for the second-generation Very Large Telescope-interferometer (VLTI) instrument GRAVITY consists of a novel cryogenic near-infrared wavefront sensor to be installed at each of the four unit telescopes of the Very Large Telescope (VLT). Feeding the GRAVITY wavefront sensor with light in the 1.4–2.4 μm band, while suppressing laser light originating from the GRAVITY metrology system requires custom-built optical componets. In this paper, we present the development of a quantitative near-infraredpoint diffraction interferometric characterization technique, which allows measuring the transmitted wavefront error of the silicon entrance windows of the wavefront sensor cryostat. The technique can be readily applied to quantitative phase measurements in the near-infrared regime. Moreover, by employing a slightly off-axis optical setup, the proposed method can optimize the required spatial resolution and enable real time measurement capabilities. The feasibility of the proposed setup is demonstrated, followed by a theoretical analysis and experimental results. Our experimental results show that the phase error repeatability in the nanometer regime can be achieved.
Keywords:adaptive optics  non-common aberration  point diffraction interferometry
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号