首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The generalized triangular decomposition
Authors:Yi Jiang  William W Hager  Jian Li
Institution:Department of Electrical and Computer Engineering, University of Florida, P.O. Box 116130, Gainesville, Florida 32611-6130 ; Department of Mathematics, University of Florida, P.O. Box 118105, Gainesville, Florida 32611-8105 ; Department of Electrical and Computer Engineering, P.O. Box 116130, University of Florida, Gainesville, Florida 32611-6130
Abstract:Given a complex matrix $ \mathbf{H}$, we consider the decomposition $ \mathbf{H} = \mathbf{QRP}^*$, where $ \mathbf{R}$ is upper triangular and $ \mathbf{Q}$ and $ \mathbf{P}$ have orthonormal columns. Special instances of this decomposition include the singular value decomposition (SVD) and the Schur decomposition where $ \mathbf{R}$ is an upper triangular matrix with the eigenvalues of $ \mathbf{H}$ on the diagonal. We show that any diagonal for $ \mathbf{R}$ can be achieved that satisfies Weyl's multiplicative majorization conditions:

$\displaystyle \prod_{i=1}^k \vert r_{i}\vert \le \prod_{i=1}^k \sigma_i,   1 \le k < K, \quad \prod_{i=1}^K \vert r_{i}\vert = \prod_{i=1}^K \sigma_i, $

where $ K$ is the rank of $ \mathbf{H}$, $ \sigma_i$ is the $ i$-th largest singular value of $ \mathbf{H}$, and $ r_{i}$ is the $ i$-th largest (in magnitude) diagonal element of $ \mathbf{R}$. Given a vector $ \mathbf{r}$ which satisfies Weyl's conditions, we call the decomposition $ \mathbf{H} = \mathbf{QRP}^*$, where $ \mathbf{R}$ is upper triangular with prescribed diagonal $ \mathbf{r}$, the generalized triangular decomposition (GTD). A direct (nonrecursive) algorithm is developed for computing the GTD. This algorithm starts with the SVD and applies a series of permutations and Givens rotations to obtain the GTD. The numerical stability of the GTD update step is established. The GTD can be used to optimize the power utilization of a communication channel, while taking into account quality of service requirements for subchannels. Another application of the GTD is to inverse eigenvalue problems where the goal is to construct matrices with prescribed eigenvalues and singular values.

Keywords:Generalized triangular decomposition  geometric mean decomposition  matrix factorization  unitary factorization  singular value decomposition  Schur decomposition  MIMO systems  inverse eigenvalue problems
点击此处可从《Mathematics of Computation》浏览原始摘要信息
点击此处可从《Mathematics of Computation》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号