首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Methane dissociative adsorption on the Pt(111) surface over the 300-500 K temperature and 1-10 Torr pressure ranges
Authors:Marsh Anderson L  Becraft Kevin A  Somorjai Gabor A
Institution:Department of Chemistry, University of California, Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Abstract:The dissociative adsorption of methane on the Pt(111) surface has been investigated and characterized over the 1-10 Torr pressure and 300-500 K temperature ranges using sum frequency generation (SFG) vibrational spectroscopy and Auger electron spectroscopy (AES). At a reaction temperature of 300 K and a pressure of 1 Torr, C-H bond dissociation occurs in methane on the Pt(111) surface to produce adsorbed methyl (CH(3)) groups, carbon, and hydrogen. SFG results suggest that C-C coupling occurs at higher reaction temperatures and pressures. At 400 K, methyl groups react with adsorbed C to form ethylidyne (C(2)H(3)), which dehydrogenates at 500 K to form ethynyl (C(2)H) and methylidyne (CH) species, as shown by SFG. By 600 K, all of the ethylidyne has reacted to form the dissociation products ethynyl and methylidyne. Calculated C-H bond dissociation probabilities for methane, determined by carbon deposition measured by AES, are in the 10(-8) range and increase with increasing reaction temperature. A mechanism has been developed and is compared with conclusions from other experimental and theoretical studies using single crystals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号