首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Relativistic effects on the nuclear magnetic resonance shielding of FX (X = F, Cl, Br, I, and At) molecular systems
Authors:Gómez Sergio S  Aucar Gustavo A
Institution:Physics Department, Natural and Exact Science Faculty - UNNE and Institute for Modeling and Innovation on Technology, IMIT CONICET-UNNE, Av Libertad 5460, W3404AS Corrientes, Argentina.
Abstract:We present ab inito full four-component and spin-free calculations of the NMR shielding parameter, σ, in the FX (X = F, Cl, Br, I and At) molecular systems. A different expression that overcomes the traditional non-relativistic (NR) approximation used to calculate the relationship between spin-rotation constants and the paramagnetic terms of σ(p) are given. Large deviations from NR results are obtained for σ(X; X = I and At) and for σ(F; FAt). σ(∥)(p)(I; FI) is zero within the NR approach but -447.4 parts per million from our calculations. The electronic origin of relativistic corrections are analyzed. All passive SO contributions are obtained as a difference between full four-component calculations and spin-free ones. Considering relativistic effects on the anisotropy, we obtain a deviation of 10% for I and 25% for At. σ(∥)(SO)(X) is always negative and σ(∥)(SF)(X) is always positive; the passive SO becomes larger than the SF one for X = Br, I, and At. Both σ(∥)(SO)(X) and σ(⊥)(SO)(X) have a functional dependence such as a Z(X)(b) being the exponent 3.5 and 3.65, respectively. The passive SO contribution to the anisotropy has a similar functional dependence with an exponent of 3.60, meaning that its perpendicular component is larger than its corresponding parallel component.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号