首页 | 本学科首页   官方微博 | 高级检索  
     


First-principles calculations of the structural and dynamic properties, and the equation of state of crystalline iodine oxides I2O4, I2O5, and I2O6
Authors:Wu Zhongqing  Kalia Rajiv K  Nakano Aiichiro  Vashishta Priya
Affiliation:Collaboratory for Advanced Computing and Simulations, Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, California 90089-0242, USA.
Abstract:The structural and dynamical correlations, and the equation of state of crystalline I(2)O(4), I(2)O(5), and I(2)O(6) are investigated by first-principles calculations based on the density functional theory (DFT). The lattice dynamics results reveal distinctive features in the phonon density of states among the three crystals. The frequencies of the stretch modes in I(2)O(4) and I(2)O(5) are clearly separated from those of the other (e.g., bending) modes by a gap, with all stretch modes above the gap. In contrast, the gap in I(2)O(6) separates the highest-frequency stretch modes with other stretch modes, and there is no gap between the stretch and the other modes in I(2)O(6). The motion of iodine atoms is involved in all vibrational modes in I(2)O(5), but only in low-frequency lattice modes in I(2)O(6). In I(2)O(4), iodine atoms are involved in modes with frequency below 700 cm(-1). Van der Waals correction within our DFT calculations is found to reduce the overestimation of the equilibrium volume, with its effect on structure similar to the pressure effect. Namely, both effects significantly decrease the inter-molecular distances, while slightly increasing the bond lengths within the molecules. This causes the frequencies of some vibrational modes to decrease with pressure, resulting in negative "modes Gru?neisen parameters" for those modes. Thermodynamic properties, derived from the equation of state, of crystalline I(2)O(4), I(2)O(5), and I(2)O(6) are discussed within the quasi-harmonic approximation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号