首页 | 本学科首页   官方微博 | 高级检索  
     


Nonlinear least-squares estimation
Authors:David Pollard
Affiliation:Statistics Department, Yale University, Box 208290, Yale Station, New Haven, CT 06520-8290, USA
Abstract:The paper uses empirical process techniques to study the asymptotics of the least-squares estimator (LSE) for the fitting of a nonlinear regression function. By combining and extending ideas of Wu and Van de Geer, it establishes new consistency and central limit theorems that hold under only second moment assumptions on the errors. An application to a delicate example of Wu's illustrates the use of the new theorems, leading to a normal approximation to the LSE with unusual logarithmic rescalings.
Keywords:primary 62E20   secondary 60F05   62G08   62G20
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号