PLS regression: A directional signal-to-noise ratio approach |
| |
Authors: | Pierre Druilhet Alain Mom |
| |
Affiliation: | a CREST-ENSAI, Campus de Ker Lann, 35, 170 BRUZ, France b Laboratoire de Statistique, Université Rennes II, RENNES, France |
| |
Abstract: | We present a new approach to univariate partial least squares regression (PLSR) based on directional signal-to-noise ratios (SNRs). We show how PLSR, unlike principal components regression, takes into account the actual value and not only the variance of the ordinary least squares (OLS) estimator. We find an orthogonal sequence of directions associated with decreasing SNR. Then, we state partial least squares estimators as least squares estimators constrained to be null on the last directions. We also give another procedure that shows how PLSR rebuilds the OLS estimator iteratively by seeking at each step the direction with the largest difference of signals over the noise. The latter approach does not involve any arbitrary scale or orthogonality constraints. |
| |
Keywords: | 62J05 62J07 |
本文献已被 ScienceDirect 等数据库收录! |
|