首页 | 本学科首页   官方微博 | 高级检索  
     


Modulating properties of aqueous sodium dodecyl sulfate by adding hydrophobic ionic liquid
Authors:Behera Kamalakanta  Pandey Siddharth
Affiliation:Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Abstract:Altering and modifying important physicochemical properties of aqueous surfactant solutions is highly desirable as far as potential applications of such systems are concerned. Changes in the properties of aqueous solutions of a common anionic surfactant sodium dodecyl sulfate (SDS) are assessed in the presence of a common and popular 'hydrophobic' ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF(6)). Upon addition of up to approximately 0.10 wt% bmimPF(6), a dramatic decrease in critical micelle concentration (cmc) is accompanied by an increase in the degree of counterion dissociation (alpha) and micellar aggregation number (N(agg)) indicating micellar growth. However, in the range 0.10 wt% < or = bmimPF(6) 2.00 wt%, relatively gradual decrease in alpha and N(agg) is observed along with no change in cmc. Significantly decreased microfluidity of the aqueous SDS solutions on addition of bmimPF(6) is indicated by a fluorescence microviscosity probe 1,3-bis-(1-pyrenyl)propane which suggests partitioning of bmimPF(6) into the SDS micellar phase. Behavior of solvatochromic fluorescence probes, pyrene, pyrene-1-carboxaldehyde, and 2-(p-toluidino)naphthalene-6-sulfonate, confirms interaction, and possible complexation, between IL bmimPF(6) and anionic micellar surface. Increased solubility of bmimPF(6) with increasing SDS concentration further confirms SDS-bmimPF(6) interactions. Presence of strong electrostatic attraction between bmim(+) and anionic micellar surface is proposed to be the most dominant reason for these observations. All-in-all, unique role of a hydrophobic ionic liquid bmimPF(6) in modifying the properties of aqueous anionic sodium dodecyl sulfate is demonstrated.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号