首页 | 本学科首页   官方微博 | 高级检索  
     


Mesh phases in a ternary nonionic surfactant, oil, and water system
Authors:Wang Ying  Holmes Michael C  Leaver Marc S  Fogden Andrew
Affiliation:Centre for Materials Science, Department of Physics, Astronomy and Mathematics, University of Central Lancashire, Preston PR1 2HE, Lancashire, England.
Abstract:The binary system of hexaethylene glycol n-hexadecyl ether (C16EO6) and water (2H2O) has a complex, temperature-dependent lyotropic phase sequence, in the concentration region of 48-62 wt %. On cooling it shows the sequence lamellar phase, L(alpha), random mesh phase Mh1(0), rhombohedral mesh phase, Mh1(R(-)3m), bicontinuous cubic phase, V1(Ia(-)3d), and a two-phase hexagonal region, H1+Lbeta. On heating from the latter two-phase region the phase sequence is V1(Ia(-)3d), ,Mh1(0), and Lalpha. Polarizing optical microscopy, 2H nuclear magnetic resonance, and small-angle X-ray scattering have been used to study the stability of these phases, their sequence, and their physical parameters with the addition of the oils, 1-hexene, decane, and octadecane. The oils are located within the alkyl chain regions of the mesophase structures. Depending on whether the added oil is "penetrating" or "swelling", it may reside in the region between the C16 alkyl chains of the surfactant or at the center of the bilayer and affect phase stability. Oils affect both the volume of the alkyl chain region (at fixed surfactant water mole ratio) and the rigidity of the interfacial region. Both effects can influence the phase structures and their ranges of stability. Adding different types of oil to the mesh phases gives an opportunity to understand the factors that are important in their formation. The transition from the Mh1(R(-)3m) phase to Mh1(0) phase is triggered by the hydrocarbon region swelling to a critical volume fraction of 0.32, a surfactant rod radius of approximately 1.75 nm, and a critical water layer thickness of approximately 2.5 nm. The latter is most likely responsible for a weakening of the interlayer headgroup overlap interaction and the loss of correlation between the layers. The lamellar phase becomes the only stable phase at high oil content.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号