首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanical properties and inhomogeneous nanostructures of dicyandiamide-cured epoxy resins
Authors:Hajime Kishi  Takemi Naitou  Satoshi Matsuda  Atsushi Murakami  Yuichi Muraji  Yoshitsugu Nakagawa
Affiliation:1. Graduate School of Engineering, Himeji Institute of Technology, University of Hyogo, 2167, Shosha, Himeji, Hyogo 671-2201, Japan;2. Toray Research Center, Inc., 3-3-7, Sonoyama, Otsu, Shiga 520-8567, Japan
Abstract:Dicyandiamide (DICY)-cured epoxy resins are important materials for structural adhesives and matrix resins for fiber reinforced prepregs. The objective of this study was to examine the mechanical and physical properties as well as the gel structures of the cured resins and discuss the relationships among them. Diglycidyl ether of bisphenol-A (DGEBA) oligomers were chosen as the common chemical structure of the epoxy resins. Four kinds of resin mixtures were formulated using the seven types of DGEBA oligomers having different molecular weight distributions. Three resin formulations having bimodal-type molecular weight distributions were designed to have almost identical rubbery plateau values of the storage modulus in dynamic mechanical analyses after curing, means that they had almost equivalent average crosslink density and basic chemical structure. However, the toughness, ductility, and environmental (heat and solvent) resistance of these three formulations were different. Atomic force microscopy revealed the existence of inhomogeneous nanoscale gel structures in these cured resins. The morphological differences in the gel structures in terms of their size, the connectivity, and the relative magnitude of the heterogeneity would cause the difference in several properties of the DICY-cured epoxy resins. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1425–1434, 2007
Keywords:crosslinking  ductility  epoxy  gel structure  heat resistance  mechanical properties  solvent resistance  structure-property relations  toughness
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号