首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On variational symmetry of defect potentials and multiscale configurational force
Authors:Shaofan Li
Institution:1. Department of Civil and Environmental Engineering , University of California , Berkeley, CA94720, USA shaofan@berkeley.edu
Abstract:In this work, we study invariant properties of defect potentials that are capable of describing defect motions in a continuum. By formulating two canonical defect theories, a generalized Nye theory and the Kröner–de Wit theory, we have found three defect potentials that are variational, i.e. their associated Euler–Lagrange equations are differential compatibility conditions of the continuum and defects. Consequently, symmetry properties of these variational functionals render several classes of new conservation laws and invariant integrals that are related with continuum compatibility conditions, which are independent of the constitutive relations of the continuum. The contour integral of the corresponding conserved quantity is path-independent, if the domain encompassed by such an integral is specifically defect-free. The invariant integral is applied to study macroscopically brittle fracture, and a multiscale Griffith criterion is proposed, which leads to a rigorous justification of the well-known Griffith–Irwin theory.
Keywords:compatibility  conservation laws  configurational force  dislocation  fracture  multiscale analysis  path-independent integral
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号