首页 | 本学科首页   官方微博 | 高级检索  
     


Structural,elastic, electronic and thermal properties of M2SbP (M = Ti,Zr and Hf)
Authors:A. Bouhemadou
Affiliation:1. Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science , University of Setif , 19000 Setif , Algeria a_bouhemadou@yahoo.fr
Abstract:The structural, elastic, electronic and thermal properties of M2SbP (M = Ti, Zr and Hf) were studied by means of a pseudo-potential plane-wave method based on the density functional theory within both the local density approximation and the generalised gradient approximation. The optimised zero-pressure geometrical parameters, i.e. the two unit cell lengths (a, c) and the internal coordinate (z), were in good agreement with available experimental and theoretical data. The effect of high pressure, up to 20 GPa, on the lattice constants shows that the contractions along the a-axis were higher than along c-axis. The anisotropic independent elastic constants were calculated using the static finite strain technique. Numerical estimations of the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, average sound velocity and Debye temperature for ideal polycrystalline M2SbP aggregates were performed in the framework of the Voigt–Reuss–Hill approximation. The calculated band structures show that all studied materials are electrical conductors. Analysis of the atomic site projected densities showed that the bonding is of covalent–ionic nature with the presence of metallic character. The density of states at the Fermi level is dictated by the transition metal d–d bands; the Sb element has little effect. Thermal effects on some macroscopic properties of M2SbP were predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variations of the volume expansion coefficient, heat capacity and Debye temperature with pressure and temperature in the ranges 0–50 GPa and 0–2000 K were obtained successfully.
Keywords:MAX phases  ab initio calculations  elastic properties  electronic structure  thermal properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号