首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Elastic mechanical grain interactions in polycrystalline materials; analysis by diffraction-line broadening
Authors:MKA Koker  U Welzel
Institution:Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research) , Heisenbergstra?e 3, D-70569 Stuttgart , Germany
Abstract:Abstract

Experimental investigations have revealed that the Neerfeld–Hill and Eshelby–Kröner models, for grain interactions in massive, bulk (in particular, macroscopically isotropic) polycrystals, and a recently proposed effective grain-interaction model for macroscopically anisotropic polycrystals, as thin films, provide good estimates for the macroscopic (mechanical and) X-ray elastic constants and stress factors of such polycrystalline aggregates. These models can also be used to calculate the strain variation among the diffracting crystallites, i.e. the diffraction-line broadening induced by elastic grain interactions can thus be predicted. This work provides an assessment of diffraction-line broadening induced by elastic loading of polycrystalline specimens according to the various grain-interaction models. It is shown that the variety of environment, and thus the heterogeneity of the stress–strain states experienced by each of the individual grains exhibiting the same crystallographic orientation in a real polycrystal, cannot be accounted for by traditional grain-interaction models, where all grains of the same crystallographic orientation in the specimen frame of reference are considered to experience the same stress–strain state. A significant degree of broadening which is induced by the heterogeneity of the environments of the individual crystallites is calculated on the basis of a finite element algorithm. The obtained results have vast implication for diffraction-line broadening analysis and modelling of the elastic behaviour of massive polycrystals.
Keywords:elastic grain interaction  single-crystal elastic anisotropy  diffraction-line broadening  elastic loading  grain-interaction models  quasi-isotropic materials  stress–strain variation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号