首页 | 本学科首页   官方微博 | 高级检索  
     


The temperature dependence of thermal expansion for p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite thermoelectric materials
Authors:Robert D. Schmidt  Jennifer E. Ni  Jeffrey S. Sakamoto  Rosa M. Trejo  Edgar Lara-Curzio
Affiliation:1. Chemical Engineering and Materials Science Department, Michigan State University , East Lansing , MI 48824 , USA;2. High Temperature Materials Laboratory, Oak Ridge National Laboratory , Oak Ridge , TN 37831 , USA
Abstract:During waste heat recovery applications, thermoelectric (TE) materials experience thermal gradients and thermal transients, which produce stresses that scale with the TE material's coefficient of thermal expansion (CTE). Thus, the temperature-dependent CTE is an important parameter for the design of mechanically robust TE generators. For three skutterudite thermoelectric compositions, n-type Co0.95Pd0.05Te0.05Sb3 (with and without 0.1 at. % cerium doping) and p-type Ce0.9Fe3.5Co0.5Sb12, the CTE was measured using two methods, i.e. X-ray diffraction on powder and bulk specimens and dilatometry on bulk specimens. Each bulk specimen was hot pressed using powders milled from cast ingots. Between 300?K and 600?K, the mean CTE values were 9.8–10.3?×?10?6 K?1 for the non-cerium-doped n-type, 11.6?×?10?6 K?1 for the 0.1 at. % cerium-doped n-type and from 12.7 to 13.3?×?10?6 K?1 for the p-type. In the literature, similar CTE values are reported for other Sb-based skutterudites. For temperatures >600?K, an unrecovered dilatational strain (perhaps due to bloating) was observed, which may impact applications. Also, the submicron particle sizes generated by wet milling were pyrophoric; thus, during both processing and characterization, exposure of the powders to oxygen should be limited.
Keywords:thermal expansion  X-ray diffraction  inclusion  thermoelectric  skutterudite
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号