首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Atomistic multiscale simulations on the anisotropic tensile behaviour of copper-alloyed alpha-iron at different states of thermal ageing
Authors:David Molnar  Peter Binkele  Stephen Hocker  Siegfried Schmauder
Institution:1. Institute for Materials Testing, Materials Science and Strength of Materials , University of Stuttgart , Pfaffenwaldring 32, 70569 Stuttgart , Germany;2. Stuttgart Research Center of Simulation Technology (SRC SimTech), SimTech Cluster of Excellence , University of Stuttgart , 70569 Stuttgart , Germany david.molnar@imwf.uni-stuttgart.de;4. Institute for Materials Testing, Materials Science and Strength of Materials , University of Stuttgart , Pfaffenwaldring 32, 70569 Stuttgart , Germany;5. Stuttgart Research Center of Simulation Technology (SRC SimTech), SimTech Cluster of Excellence , University of Stuttgart , 70569 Stuttgart , Germany
Abstract:The mechanical behaviour of steels is strongly related to their underlying atomistic structures which evolve during thermal treatment. Cu-alloyed α-Fe undergoes a change in material behaviour during the ageing process, especially at temperatures of above 300°C, where precipitates form on a large time-scale within the α-Fe matrix, yielding first a precipitation strengthening of the material. As the precipitates grow further in time, the material strength decreases again. This complex process is modelled with a multiscale approach, combining Kinetic Monte Carlo (KMC) with Molecular Dynamics (MD) simulations in a sequential way and exploiting the advantages of both methods while simultaneously circumventing their particular disadvantages. The formation of precipitates is modelled on a single-crystal lattice with a diffusion based KMC approach. Transferring selected precipitation states at different ageing times to MD simulations allows the performance of nano tensile tests and the analysis of failure initiation. The anisotropic tensile behaviour is investigated in the 100], 110] and 111] directions, showing monotonically decreasing tensile strengths and deformation strains. Hence precipitation strengthening is mainly due to dislocation–precipitate interactions which are non-existent at small tensile loadings in this scenario. At the point of ductile failure, dislocations are generated at the interfaces between precipitates and the Fe matrix. Straining in the 100] direction, they lie on {110} and {112} glide planes, as expected. With the method presented here, the changes of the anisotropic tensile moduli are related to different states of thermal ageing, i.e., to nucleation, growth and Ostwald ripening of Cu precipitates.
Keywords:multiscale  Kinetic Monte Carlo  Molecular Dynamics  precipitation  ferritic alloy  nano tensile test  sequential coupling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号